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TOWARDS UNDERSTANDING THE MECHANISM OF RECEPTIVITY AND BYPASS

DYNAMICS IN LAMINAR BOUNDARY LAYERS*

D.G. LASSEIGNE ?, W.O. CRIM1NALE_, ll.D. .IOSLIN§, AND T.L. JACKSON ¶

Abstract. Three problems concerning laminar-turbulent transition are addressed by solving a series of

initial value problems. The first problem is the calculation of resonance within the continuous spectrunl of

the Blasius boundary layer. The second is calculation of the growth of Tolhnien-Schlichting waves that are

a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the

calculation of non-parallel effects. Together, these problems represent a unified approach to the study of

freestream disturbance effects that couhi lead to transition. Solutions to tile temporal, initial-value problen_

with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is

shown that:

• A transient disturbance lying completely outside of the boundary layer ('an lead to the growth of an

unstable Tolhnien-Schlichting wave.

• A resonance with the continuous spectrum leads to strong amplification that may provide a mecha-

nism for bypass transition once nonlinear effects are considered.

• A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger

Tolhnien-Schlichting wave downstream, if the original disturbance has a significant portion of its

energy in the continuum modes.

Key words, boundary layer, receptivity

Subject classification. Fluid Dynamics

1. Introduction. In previous work [3],[8], the authors have shown a strong correlation to the solution

of a temporal, three-dimensional, initial-value problem and the direct numerical simulation of the spatial

problem. The methodology consisted of solving the linear disturbance equations subject to a series of initial

values. These solutions are relatively easy, fast, and inexpensive to calculate. The corresponding spatially

evolving flow was then determined by direct numerical sinmlation using the fidl Navier-Stokes equations

and the two solutions were compared. During the period of transient growth for both channel flow and the

laminar boundary layer, the two approaches agree quite well. Thus, it is reasonable to use the inexpensive

and fast solutions of the temporal, initial-value problem as a means to conduct numerical exl)eriments that

can lead to greater understanding of receptivity and bypass mechanisms. Of course, tile suitability of this

approach must he continually confirmed by selectively using the more expensive direct numerical sinmlation

to compare with the ma.}or results. For channel flow [3], the dynamics of specific initial conditions were

determined, and the growth of disturbance energy compared to initial conditions which produce optimal

growth of disturbance energy. The optimal initial conditions were determined by appropriately expanding

the initial condition, finding the solution to a relatively few number of initial value problems, and determining
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tile coefficients which maximized tile disturbance energy. Tile transient period of the laminar boundary

layer [8] was investigated in a similar manner. By using this approach, the contributions of the continuum

modes are properly assessed, and it is determined that they must play a crucial role in tile analysis of

bypass mechanisms. It is only natural that we extend our studies to investigate the effects that fi'eestreanl

disturbances have on the laminar boundary layer.

Receptivity has traditionally been divided into two broad categories, forced receptivity or natural re-

ceptivity, based on the physical and mathematical descriptions. Forced receptivity is characterized by the

experiments of Nishioka and Morkovin [9] where disturbances of limited spatial extent are. introduced in

the freestream downstream of the leading edge. Tile case of natural receptivity is characterized by the

experiments of Boiko, i.e.,[1] where a disturbance field upstream of the leading edge of a smooth plate is

generated. Great care is used to establish a zero pressure gradient at the plate, so that the mean flow (in

the absence of the grid) has a Blasius profile. By assuming that disturbances are kept at a level in which

linear theory applies, the differences hetween the two types of receptivity are seen mathematically in that

the forced receptivity problem is governed by a set of inhomogeneous linear partial differential equations in

time and space and natural receptivity by the homogeneous problem. Downstream of the imposed distur-

l)ance, the forced receptivity problem is the same mathematically as the natural receptivity problem. In

addition to the two traditional categories of receptivity, there is a third case of receptivity that results ill

either all inhomogeneous problem or a honiogeneous problem (let)endiilg on the niodeling approach taken.

This case (:oneerns the scattering of freestream disturl)anees hy localized surface irregularities (e.g. acoustic

disturbance or free stream turbuhul(:(, with surface roughness or surface blowing and suction). Viewed as a

perturt)ational t)robleni, an inhomogeneous problem results; however, viewed as a problenl of (:hanging mean

flow, a homogeneous problem results. Here, it is referred to as the naturally-forced receptivity problem since

it has characteristics of t)oth of the tra(titional categories.

The procedure used here, integrating the linear disturbance equations of temporal stability theory as an

initial vahw problenl, is straightforward and simple. It has already been demonstrated to be able to agree

well with the direct numerical sinmlation of the spatial problem since in every numerical calculation, the

complete solution including the continuuin eigenfunctions of the Orr-Sommerfeld problem and all discrete

modes is determined. Only afterwards is this solution interpreted in terins of the individual modes of the

Orr-Sommerfeld equations. The theory of expanding the solution in terms of Orr-Sommerfeld eigenfunctions

is presented in the classic work of Salwen and Grosch [10] while the description of the important continuum

modes is found ill Grosch and Salwen [6].

The rest of the paper is organized in the following manner. In Section 2, the equations governing tile

evolution of a (tisturbance under the assumptions of parallel linear theory and subjected to forcing terIns

are presented. The forcing terms can be interpreted ms resulting from the forced receptivity problem or the

nonlinear interaction of two linearly independent disturbances in the naturally forced receptivity problem.

Fourier transforms in the streamwise and spanwise direction reduce the equations to partial differential

equations in time and the vertical variable y. In the case of naturally forced receptivity, it is determined that

the only part of the force that can affect the normal velocity component, and therefore the generation of

Tolhnien-Sehlichting waves, is the divergence free component of the force. In Section 3, two major issues are

explored t)y constructing the complete solutions of the temporal inhoinogeneous problem using a model mean

flow. Tile first issue deals with the difference between specifying the forcing by prescribing the individual

fi)rcing components in the momentum equations (naturally forced receptivity) or by specifving a vorticity

source (forced receptivity). It is shown that by specifying the vorticity source, there is an immediate rest)onse



throughouttheboundarylayerwhichleadsto anmchhigherdegreeof receptivitythanthespecificationof
forcingin themomentmnequations.Thesecondissuedealswith thepossibilityof resonantforcing.Both
theseimportantissuesarelateraddressedI)ynmneriealcalculationsusingthecontinuousmeanvahleprofile,
andthe analyticalresultsof thissectionareverified.In Section4, the construction of tile solution to the

inhomogeneous problem in terms of all of the eigenfunctions of the Orr-Sommerfeld problem is presented.

Tim gain in the coefficients of an eigenfimction expansion of the solution from before the imposition of

forcing to after the imposition of the forcing is used to characterize the receptivity due to the forcing. Most

importantly though, it. is noted that the results after the imposition of the dist.urbance shouhl be considered

as initial values at a higher Reynolds number. Thus the transfer of the solution in terms of an Orr-Sommerfeht

eigenfunction from one Reynolds nmnlmr to another is presented. It is also shown in this section, that if

the forcing is specified as forcing components in the momentum equations, that the eigenfunction expansion

of the solution to the inhomogeneous problem has a simple form. From this solution, it is seen that the

resonance found in Section 3 is indeed a resonance of the forcing with the continuum modes. All results

presented in Section 4 are verified by numerical calculations.

2. Basic Governing Equations. For tim flat-plate boundary layer, the fluid is taken as one of constant

density with the basic flow approximated as parallel with U = U(y), I" = I|" = {}. The instantaneous flow is

decomposed into a basic state, (U, I'. IV, P), plus a time-dependent disturl)ance to this basic state, (u,v,w,p).

Then, the nondinmnsional linearized equations of motion are written as

O', Ov Ow

(2.1) 0--ix+ Y.0 + 7zz = 0,

(2.2) 0--[ + Ox + -v + = +--+ + A,d_j _ LOx2 0.02 Oz"-J

(2.3) Ov [_Ot, Op=R_,[8"-'t, 02v O2v]
o_ + " _ + N Los-' + --o.0_+ _.2 j + B.

and

(2.4) 0,,, cow 0p
0-7+ ,_-7+ _ =R- L0x-' +o-7 + 0_J +c.

The length scale chosen for non-dimensionalization is the displacement thickness, and thus the non-dimensional

mean velocity is related to the Blasius boundary layer solution by U(y) = f(3;.0) with f(71) being the solution

to

(2.5) f'"+ 2ff" = 0 subject to f(0) = f'(0) = 0, f'(ec) = 1.

• OC,

where 3_ = fo (1 - f'(71)) dzl ,_ 1.7208. The nondimensional mean profile satisfies J0 (1 - U(y)) dy = 1

and U(2.856) = .99 gives the outer edge of the boundary layer. Here, R is the conventional Reynolds number

based on tile displacement thickness, and time is nondimensionalized by the advective time scale, hi addition,

A, B and C are the nondimensional components of a prescrihed force, F(z, Y, z, t).

Then, by using the Fourier transformations defined with respect to x and z as

(2.6) f_ Ff:( c_, y, _, t) = v( x, y, z, t)e il_x+_:)dxdz
(2<5 C_



(etc. for u,w, p, .4, B and C), equations (1) to (4) become

0_

(2.7) -i(a_ + fSff_)+ _ = 0

0"_1. --iotU'(t--}- _71(_ - ic_) = R -1 [ 02'_ ](2.8) 0-5 [ Oy2 - 5"_
+ ,4,

(2.9)

and

O'b ioUi) + - 5'2_; + [_.

o+ ,_, ](2.1o) 0-5-- i_,u,z, - ,:_p = Lou' - ,_2,_, + _,,

respectively, where _' = dU/dy and ._2 = (_'-,+ f12. The Squire transformation, written as

(2.11) od + 3if, = _fi,

(2.12) -¢¢i_ + o,_, = "_,b,

and ('omt)ined with ot)erations on (2.7) to (2.10) enables the elimination of the t)ressure to obtain the pair

of (,(luatioIls

(2.13)

and

where A is the linear operator

(2.15)

d' = sin OU"_ + R -1A.& - sin 0.-1 + cos 0C,

0 2

A_ 7".
Oy 2

Here, sin ¢ = f_/5', Ai_ is proportional to the difference of the vorticity components in the x - z t)lane

( Ai, = i;3(ov -iad.,:) and _i_ is proportional to the normal vorticity component (cOv = iq_). The first

inhomogeneous term on the right hand side of (2.14) has been denoted as vortex tilting and acts as forcing

for the norinal vortMty. Such tilting is a product of the mean vorticity in the spanwise direction (f_: = -U')

and the t)erturbation strain rate (Ov/Oz). For a three diInensional disturbance, the vortex tilting gives

rise to the increase of the normal vorticity. It is clear that the solutions of (2.13) and (2.14), combined

with contilmity and the Squire transformation, are equivalent to solving (2.7) to (2.10). Lastly, 15can be

deternfined once the/) component of velocity is known. In either case, solutions of the equations are subject

to iml)osed initial conditions and the following boundary conditions at the the plate, namely

0_
(2.16) _,(0, t) = ._-2.(0, t) = _b(0, t) = 0,

ely



aswellasboundednessconditionsin thefreestream.
Toevaluatetheothervelocitycomponents,thequantities9 and,i7_arecomputedfrom(2.13) and (2.14),

respectively. Then, tile Squire transformation, (2.11) and (2.12), is inverted to give

(2.17) __ icosOOi_ sin0 *_,
_, Oy

and

(2.18) ,_i - i sin ¢ 0_, + cos 0 E'.
Oy

An energy density in the ('_, _b) plane as a function of time is defined as

(2.19) E*(t) = [1_t2 + I,>12+ t,,>1"]d,/

or, in terms of the variables _ and ,F, this becomes

(2.20) E*(t) = I_l 2 + [u,[- + _, - 0y J dy.

In using ttmse definitions, the class of disturbances is more restricted than those that are only bounded at

infinity. However, in all calculations that follow, both the specified forcing and the initial conditions are

chosen as decaying as y --+ o¢ and therefore the energy integral defined as (2.20) converges for all time. The

continuum is still represented in these calculations, as it is the integral over all the continuum modes, not

an individual continuuln mode that appears in the complete solution. The total energy of tile l)erturbation

can be found by integrating (2.20) over all _. and ¢. A nornlalized energy density, namely

E*(t)
(2.21) E(t) -

e*(o)'

measures tile growth in energy at time t fi)r a prescribed initial con<tition at t = 0 and subject to prescribed

forcing.

2.1. Interpretation of the Forcing: F. By knowing the perturbation velocity components, the

perturbation vorticity is determined by appealing to their definitions, namely

O,b
(2.22) _ = -a-- + i/_'_,

oy

(2.23) &y = -iflfi + ictd, = i_,,

anti

0fi

(2.24) &: = -iaf,- 0y'

in wave space. The governing equations, (2.7) to (2.10), are recast into equations governing vorticity and

pressure so that the effect tile chosen forcing has on the flow can be interpreted. These equations are:

[0 ](2.25) _ - iaU 5a_ - ic, U'.g, = R-_A_ + _ + i_/},



(2.26) [o ]-_ - ieU _v - i.'3U'O = R-1,5_v - i_fi + ic_C,

[o l(2.27) -_ - ic_U &. - i/?U' ff' - U"f, = R-1A&- - Oft _ rail- ' " Oy

and

03
(2.28) &/) = 2ictU'i, - i(n_21 +/3C) + O--7_y.

The components of tile force/_ = (.4, B, C) are specified according to the particular problem at hand.

Since any vector field can be decomposed into a field that is divergence free and a field that is curl free,

and since the forcing terms in the vorticity and pressure equations are the curl and divergence of the force,

respectively, this is a proper place to start. First, suppose that/_ represents the component of the force that

is curl free, i.e.,

(2.29) V x P_ = 0.

In Fourier spaee this means

o_ aA
(2.30) O--y + i;3[_ = 0; _(_: -3,4 = 0; i_t/) + _ = 0.

For this choi('e, the forcing terlns appearing in the vorticity equations vanish, and only the pressure dis-

turt)ance is directly affected. To specify this case, any one of the components of the force is considered as

arbitrm-y while the other two components must satisfy (2.30).

Next, sut)pose that P_ represents the component of the force that is divergence free, i.e.,

(2.31) v. P = 0,

or, in Fourier space,

01)
(2.32) -i(a.'4 + L_O) + _ = 0.

Now, non-zero forcing terms appear only in the vorticity equations. To specify this case, two components of

the force are considered as arbitrary while the last must satisR" (2.32). For convenience, the two indel)endent

modes of h)reing in the normal velocity equation (2.13) without forcing in the normal vorticity equation

(2.14) given by

(2.33) /) # 0, and -/:t,_ + aC = 0

and the opposite, forcing in the normal vorticity equation (2.14) without forcing in the nornml velocity

equation (2.13) given by

5 rio,
(2.34) /) = 0, and - ¢_.-1+ a_: = -5

will be the only pair of divergence free forces considered. In the first instance, the forcing in (2.13) is the

Laplacian of B.



3. Complete Solution to an Inhomogeneous Model Problem. It has been shown by Crimi-

nale and Drazin [2] that the viscous boundary layer t)roblenl can be solved analytically for large values of

the Reynolds number by modeling the mean flow. This technique is particularly appropriate for studying

boundary-layer free stream response to external forcing. In this limit, an outer layer, i.e., the free stream,

exists that approximates an irrotational flow of an inviscid fluid, an intermediate layer exists that approxi-

mates a rotational flow of an inviscid fluid, and a viscous sublayer exists at the plate. To leading order, the

viscous terms are zero in the first two regions. The basic mean boundary layer flow is modeled as a uniform

parallel streain above a unifl)rm shear flow with a solid boundary below. Thus, for this entire section, the

basic velocity is taken as

(3.1) F(_) = (U 0,0) = / (1,0,0) ._j> 1

/ (y,0,0) 0 < y < 1.

After substituting _ from (3.1) and neglecting the viscous terms the governing equations, (2.13) and (2.14),

reduce to

l_-- - 57t)(3.2)

and

(3.3) [o 1_-_ - iaU d, = sin 0 U'_ - sin 0 -4 + cos O _',

which must be solved on either side of the interface located at. y = 1 and tout)led to the viscous sublayer

below. Both the normal velocity _, and the t)erturbation pressur(¢ •

[0(3.4) -52/? = N - i(_U _ + i(_U'C, - i(c_,2I +/_d)

are required to be continuous at y = 1. The plate conditions where _, = _' = if, = 0 at y = 0 are secured by

the solutions influenced by viscosity.

In what. follows, a number of issues concerning the specification of the forcing in the w)rticity equation

will be resolved, and results of using models based on these concepts agree with the numerical results using

the Blasius profile. These issues are directly related to whether theinhomogeneous terms represent the forced

receptivity problems or the nonlinear interaction terms in the naturally forced receptivity problem. In the

latter case, the inhomogeneous terms shouht be consistent with the velocity field since they have evolved

along with the flow. In the former case, the externally applied forcing does not have to be consistent with

a velocity field and this results in generation of vorticity at the plate. First, however, the issue of forcing in

the pressure equation is examined.

3.1. Forcing in the Pressure Equation. In considering forcing due to pressure, the component of

a force, /_, with curl equal to zero is all that is required. Therefore, for this analysis, it is assumed that

V x F = 0. The governing equations are

[0 ](3.5) -_ - ic_U AO = O.

and

[0 ](3.6) -_ - iaU _b = sin ¢ U'_;'



In like fashion, the equations for the vorticity ((2.25)-(2.27)) have no forcing terms. In short, unless vorticity

is an input initially, it cannot be generated and solutions to (3.5) and (3.6) have only irrotational portions.

The pressure equation does, on the other hand, have an extra term due to forcing and is

0/_

(3.7) Ap = 2iaU'_, - i((_fl + 3C) + O---y

This relation can be east in real space as well, namely

(3.8)

Since V x Vp = 0 and defining

(3.9)

V2p = -2U' 0v&r - V-F.

VP = Vp +/_,

equation (3.8) becoines

(3.10) V'-'P = -2U'_.

Thus. P plays the stone role as p when no external forcing in pressure is present. Seeing that this cornl_onent of

the forcing eaimot generate vorticity, and therefore Tolhnien-Schlicting waves, at this order of appoxinmtion,

attention is now focused on the divergence free component of tile forcing terms.

3.2. Naturally Forced Receptivity. In this first subsection eoncerifing the divergence free component

of the tbrcing, the matheinatically easier case of naturally forced receptivity is exanfined. Ttw receptivity is

not the result of a changing mean flow which will be studied numerically later as a homogeneous initial value

prohtem, but rather the examination of a model of the forcing produced by the nonlinear interactions of

two continuous disturbances (e.g., acoustic disturbance or free stream turbulence with surface roughness or

surface blowing and suction). As mentioned in the introduction, this problem has two different mathematical

formulations depending on whether the problem is viewed as a perturbation series, or the disturbances caused

by surface effects are included in tile mean flow. The main Dature of this type of forcing as opposed to forced

receptivity, exanfined in the next subsection, is that the forcing terins are continuous and satisfy" tile same

houndary conditions as the flow at the plate, i.e., the forcing and its y derivative are zero for y = 0. This

means that the flow has evolved in such a way that there should not be any extra vorticity generated at the

plate in order to compensate for tile prescribed forcing. It is determined that in order to have this feature,

the component /) of tile force must be prescribed and not 5/). In the freestream and intermediate shear

layer, tile governing equations are

(3.11)

and

(3.12)

[3-7-iau] A,O= _B,

[ _7 _ iaU] g, = sin CU'_5 _ ;Y_7_ o.

A Green's function for the solution for a single harmonic in time is developed by prescribing a delta

function source. Since the solution differs depending on whether the force is in tile freestream or the

intermediate shear layer, both are developed at once by using

= , y.e)e (5(y - y.,_),(3.13) /} Fl(o_,i?,_l yl)ei_)'tej(y - Yl) + F2(0.,_,_2, in2t



with Yl > 1 so that a forcing in the freestream is represented, and 0 < Y2 < 1 so that a forcing in the

intermediate shear layer is represented, fh.2 are the nondimensional frequencies of the forcing and F1,2 is a

measure of the forcing amplitudes.

The solution is just simply

(3.14) .3 = F, _,1(t)ei(v - m) + r.,e,o_(t)a(y - y,,),

where

(3.15)

and

(3.16)

I ¢i_lt eic, t

i(_1 --a)

_:,j(t) =

te mt

_'2 (t) =

teiau..t

q _h ¢ a

if lb, ¢ ay.,

Since the solution (3.14) automatically satisfies all boundary conditions, there is no need for an analysis of

the viscous sublayer at this order.

Resonance is found to be possible when the nondimensional frequency _ of the forcing is equal to the

nondimensional wavenumber a times the value of the local nondimensional velocity. In dimensional terms,

the resonance occurs whenever the forcing in the vorticity equations is advected with the flow.

After integrating Squire's equation (3.12) the general result becomes

(3.17) = *i_oeiaU_ + sin ¢ U' *3(y, t-)e ic'U(t-_-) d[ - _-,_loe-iau(t-Sd{
d

valid both in the free stream and in the intermediate layer. In the freest reanl, where U = 1 and U' = 0,

is independent of _. The second integral of (3.17) shows resonance in the freestream occurs provided the

forcing time dependence varies as

(3.18) ,4, O ~ d _"' = _'_',

the same condition shown for resonance to occur for the .3 velocity component. Both the magnitudes of .3

and of _ increase linearly in time for this resonant mechanism. If forcing is in the internmdiate layer and

tile nondinmnsional frequency of the streamwise and spanwise forcing is proportional to (tU(y2),

(3.19) ,7-1,C ,,_ e ic'u'2t,

then the nmgnitudes again increase linearly in time. However, if the frequency of the spanwise vorticity

forcing is gt2 = aye, the magnitude of ,3 grows linearly in time, and the first integral of (3.17) shows the

magnitude of u) increases quadratically in time at the location of the forcing, i.e., at y = .q_9. Thus, the

energy will increase as rapidly as t4 rather than t2. Since any solution with fast growth might contribute

to nonlinear interactions before the Tollmien-Schlichting waves become unstable, this resonan(:e condition is

important in the hunt for bypass mechanisms.



3.3. Forced Receptivity. Again, only the divergence free component of forcing is considered and the

governing equation is (3.11). However, instead of specifying B, one must specify A/?. The consequences of

this choice is that the analysis is much more involved since it must allow for generation of vorticity at the

plate. Start t)y choosing

(3.20) :-_B = Fl((t,/$,_l)ei_ht(_(Y - Yt) + F2(o_,._,_2)ein2t_(Y Y2),

with definitions of the constants tile same as the previous subsection. The solution that meets tile y --+ oc

boumlary condition is

'i, = (i,,(y) - H(0)e -5('_-1)) e i_' + H(t)e -5('_-1) - --(3.21)

for y > 1 and

(3.22)

El

_Pl(t)e -#lv-vl t,
25'

leo

f' = '5n(y,t) + D(t)e 5(v-l) + E(t)e -5(y-t) + -_7_/'2(t)e-_ v-v2t,

for 0 < y < 1. Tile flUlCtions _"1.2 are the same as before. Here, 0n(y, t) satisfies the equation

(3.23) &f'n : eia'vt!:-_V2, g'B(y,0) = v2(Y) - D(0)e #(v-l) - E(0)c -5(v-l).

Tile quantities '_1 and g'., are the initial conditions for g' in the freestream and in the intermediate shear

layer, respectively. Tile functions H, D and E are the coefficients of the homogeneous solution of &_ = 0

(irrotational part of 'f'), and nmst be determined by matching with the solution of the intermediate main

shear layer with the solution in the freestream at the interface y = 1 and with the viscous sul)layer at y = 0.

Since the time dependence is the same as before, the previous renmrks about resonance and bypass also

at)ply here.

The forcing has been set in the freestream or outer reaches of the boundary layer where viscosity is

negle('ted. To complenmnt this, a uniformly valid solution that does satisfy the boundary conditions where

P -- i,_t -- & = 0 at y -- 0 Inust be established and this requires viscosity near the plate. This was not necessary

for the case of naturally force(t receptivity where the solutions in the outer and inner layers automatically

satisfied tile boundary conditions. For the case of forced receptivity, solutions from a viscous sublayer must

I)e found that satis_' the boundary conditions and then asymptotically matched to the solutions of the

interme(tiate layer.

Near the plate, the governing equation for fi is given by

(0 )(3.24) -_ - iaU A f, = eAAg,

where e = R-1.

The sohltion f' is found by rescaling the vertical component y in equations (3.24) as Y = y/v'7 (5 = O(1)

at most). The leading order equation formed in ttie limit e --+ 0 is

0
(3.25) O-t \ OY" ] = _-_"

A similarity solution of (3.25) for 5 = v/7Ov, where the amplitude factor is introduced in anticipation of

matching, is sought which leads to the introduction of

02v_" (Y, t) = ¢(7_, r)
(3.26) 01.. 2
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with7l = Y/2v_ as the similarity variable and r = t. Then equation (3.25) becomes

(3.27) 4r04) 04) 024)
97 - 2,j_ o,i'

Integrating (3.26) gives

-0.

)" Y' "0 flff

£

Upon using the Mellin t,ransfornt of the function ¢('1, r), defined as

(3.29) 0M(7/, _) = r'_- l 4)(7/, r) dr,

the Mellin transform of f'v and _ are deterlnined to be
0Y

(a.30/

and

M f', ,= 2@M (7l" , .s"+ _ ) dll'.\ 01" ) .,.

4r4)(71", r) d,l" &l'

_I _orl '
_! = 44)M (,f',.s + 1) d*l" d_f,

At this stage, the flmction 4) (and timrefore 4)M) is undeternfined; however, the analysis can t)rocee(t by

noting that the plate conditions have been met and 4)M satisfies

(3.32) 4)M,, + 204)M, + 4soM = 0,

where primes denote derivatives with respect to _1 holding s constant. Since the solution nmst eventually

match to the intermediate shear layer, the independent solution that behaves as ¢M ,_ ,j2s must be discarded

and

(3.33) 4)M (,1, s) = C1 (s)4)l (_/, s),

' _)Mwith 4)1 being the independent solution of (3.32) with CM _ e-,F. With this solution, the quantity ( a)"

is a flmction of .s' as 7/--+ at. Defining

' 1 ,, 1 ,(3.34) l'y(s) = 2C,(s + _)4)1 ('/ ,s+ -_)d,I

as the Mellin transform of the unknown fllnction l.q (t), the asymptotic form as }" --+ ac of the viscous

sublayer solution is

(3.35) ,_,,,(Y. t) ~ I"/(t)_" + lb(t).

The function to is related to I.] which is, in turn, determined by nmtehing (3.30) with the intermediate layer

solution (3.22). To achieve this matching requires

0 = On(O, t) + D(t)e -_ + E(t)e _ - -_,2(t)e- "",
(3.36)

and

(3.37) 1_') ") 2

l'l(t) = *>_ (O,t)+ _D(t)e -_ -;yE(t)e _ - 2 W.,.(t)e - v .

11



In like fashion the tb equation can be examined in the sublayer. The governing equation is

[0 l(3.38) _ - ictU g, - eAtb = sin 0 U'_v

since there are no inhomogeneous terms due to forcing in this part of the boundary layer. By rescaling

I" = y/v/7 as before and letting if., = v/e W, the equation reduces in leading order to

OIV 02W

(3.39) Ot 0y 2 - sin O @v(l: t)

which must be solved subject to W(], 0) = 0 and W(0, t) = 0. Using the similarity variables and the Mellin"

transfi)rm WM(r/, r), equation (3.39) becomes

(3.40) 1|" ^t,, + 2_IW M, + 4s|VM = 4 sin O v_! 0/, s + 1).

The proper matching conditions are inferred from (3.40). Specifically, as Y increases, the homogeneous

solution that grows as q2._ must be discarded and the homogeneous solution that decays as e -°: is kept, but

does not affect matching. The particular solution leads to linear growth in 1" dependent on the functions

l'l (t) and li)(t).

Assuming that the solution is started from zero initial conditions (i.e., _l = _ = 0) leads to

(3.41) 'b1_(y, t) = -D(0)e 5(y-l) - E(O)e -5(u-1!

Combining (3.36) and (3.37) leads to

(3.42)

and

(3.43)

continuity of g, results in

(3.44)

E(t) - E(O) - _;(t) __,
2;y

l](t)e5 F'-'-_(t-v.,), r,__ _ --_ .... _.)_1,
S(t) O(O) = _ 24,,

H(t) = H(O)e lot + _ _',l(t)e _''-'a'l + _2_2e-_('-Y=l*/'e(t);

and continuity of/3 at y = 1 results in

F2e-5(1-u'2)(t!';2(t)-ia(l+l),o.2(t)).(3.45) 2

These last four equations constitute a system for the unknown functions D(t), E(t), H(t) and 1] (t). Thus,

the unknown function from the wall layer, V1 (t) is related to the forcing in the freestream and within the

intermediate shear layer. At this point, a consistent solution for _ has been constructed. The solution for

,[, can also be constructed from (3.17) and automatically'matches with the viscous sublayer solution. We

note that the solutions exhibit resonance as in the case of the natural receptivity problem with the main

difference between the two being that solutions for the forced receptivity problem immediately penetrate

all the way to the plate even if the forcing is in the free stream. This highlights the elliptic components of

the linear parallel disturbance equations. With this penetration into the boundary layer, it is expected that

the forced problem leads to a much higher degree of receptivity than would the natural problem. This is

confirmed by numerical calculations.
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4. Receptivity and Resonance. From the previous section, we have seen that it is possible to excite

the contilmum by a resonance like behavior. Now tile question to be asked is whether or not this can lead

to receptivity? From tile work of Salwen and Grosch [1{)], it is obvious that any arbitrary disturbance in the

freestream has (mathematically) a small non-zero contribution from the discrete sl)ectrunl (i.e., Tolhnien-

Schlichting waves). This was demonstrated nunmrically by Lasseigne et al., [8] where the solution to the

initial vahle problem with a disturbance localized about a point Y0 in the freestream produced an unstable

Tollmien-Schlichting wa_e. An examination of Hill's [7] work shows that, if there is no initial disturbance,

but rather a forcing that is turned on and later turned off, the solution of the h)rced problem can be re-

expanded in terms of the linear eigenfunctions and the growth in the Tolhnien-Schlichting waves calculated.

Thus, even if the forcing is to lie strictly outside of the boundary layer, it must still excite an unstable

Tolhnien-Schlichting wave since there is little possibility that the resulting solution is orthogonal to the

adjoint of the Tolhnien-Schlichting wave. This is an example of forced receptivity that does not rely on

any disturbance within the boundary layer proper or on any degree of non-parallelism in order to excite

the unstable Tolhniel,-Schlichting wave. The mmmrical calculations presented in this paper characterize the

strength of this mechanism.

That this receptivity mechanism does not require non-parallelisni does not mean that non-parallelism

can be neglected when considering receptivity. After the forcing has been turned off at a finite time, it

is not physically correct to expand in terms of the initial eigenfunctions since the disturbance resulting

from the forcing should be considered as the initial conditions at a higher Reynohls nuniber. Thus, even

the contimmm modes that have been excited by the h)rcing term at the original Reynohts mimber could

produce a Tollmien-Schlichting wave at the higher Reynolds number. However, the converse may also be

true. Mathematically, this is a result of the eigenflmctions at one Reynolds immber not heing orthogonal

to the adjoint eigenfunctions at another Reynolds number. Numerical calculations presented in this paper

will show that through this mechanism, non-parallel effects downst,tam of the leading edge and even into the

unstable region play a major role in the receptivity problem. In particular, Nishioka and Morkovin [9] note

that for the forced receptivity problem Tolhnien-Schlichting wave packets demonstrate growth far exceeding

the growth of a theoretical wave packet in which it is assumed that no further seeding of the Tollmien-

Schlichting waves takes place upstream of branch I of the neutral curve. Others have found such phenomena

when considering naturally forced receptivity to freestream disturbances. It is also noted here that growth

rates matching the theoretical values are found for the vibrating ribbon problem in which the continuum

plays much less of a role.

The development of the theory used here for both parallel and non-parallel boundary layers is straight-

forward and relies on the assumption that the parallel theory is at least locally applicable for each value of

the Reynolds number, i.e., the same assumption used to derive the Orr-Sommerfeld equation and as a basis

for analyzing the effects of non-parallelism on a single Tollmien-Schlichting wave. Assume that the governing

equation (2.13) for the parallel temporal problem has been written as

(4.1) Lt_(v) = f(y, t)e i_It,

with f(y, 0) = 0 and ](y, t) = 0 for t > T. The frequency czI is considered as the primary frequency of the

forcing.

Since the eigenfunctions of the Orr-Sommerfeld equation form a complete set, the solution at t = T
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(4.3)

and

found by solving (4.1) subject to zero initial conditions and Reynolds number R = R] is

N o¢,

(4.2) '_p(y,T) = E ai¢i(y, R1) + fo A( k )¢(y, k, R1) dk

i----I

where it is chosen so that the discrete eigenflmctions are normalized to have unit energy and tile continuum

are also normalized with respect to tile energy, i.e.,

1 f_ _., ,

;(-' 1o _(y, R1)(D 2 - "_-)Oi(y, Rl)dy = 1

¢* (y, k", R1)(D 2 - ;_"_)¢(y, k', Rl) dy dk' dk" = 1.
(4.4) 46_. '-,aA--_ ak-a

If we choose • as the properly normalized eigenfunctions of the adjoint solution i.e.,

1 _, _.,
2f2 t (Y' R1 )(D 2 - ")-)Oj (Y, R1) dy = 6i)(4.5)

all(|

(4.6)

then the coefficients ill (4.2) are

(4.7) ai -

and

1 fo _ - * It,}., • (y,k ,RI)(D "2- _;2)¢(y,k',R1)dy = _(k" - k'),

1 f{} _ , ~ 9_.2 d_i(Y'Hl)(D2- 2/-)vP('q'T)dy

fo "_A(k) = -_Z _*(y,k, R1)(D" - _'z)%(y,T)dy.(4.8)

The coefficients a_ are tile increase in the amplitude of the Tollnfien-Schlichting waves due to the forcing

and A(k) is the increase in tile continuum modes due to forcing. Since there is no forcing for t > T, the

evolution of the solution beyond t = T is given by

N

= _'"_oi_'_i"_'(R )(t-T),t _,_itu,(_ R1) -t- f A(k)eiSte -_(5"-'+k'-')(t-T)_'(pLy, _¢,"Rl ) dk(4.9)
,]0

i=1

Equation (4.9) represents the exact solution for a tmrely parallel flow subjected to forcing. However, the

boundary layer thickens as tilne progresses, and for a more realistic solution the effects of this must somehow

be included. This thickening of the boundary layer is of course a continuous process, but insight can be

gained by re-expanding the solution at t = T in terms of the eigenfunctions for a larger Reynolds number.

For this calculation, great care must be taken with the normalizations. First, all scalings in the y-direction

remain as the standard scalings with R = Rt. The eigenfunctions and adjoint eigenfunctions for R = R2 are

generated by replacing U(y), Ur(y), and U"(y) in equations (2.13) and (2.14) with

1 1 ,_,
(4.10) U(:q) -+ U(Ylv_), u'(y) -_ -_u (y/v_), and U"(U) -+ --U"(y/,/_0),

qx0 :gO

where v/_ = R.,_/RI. The same normalization and orthogonalization relations are a.ssumed to apply to the

new set of eigenfunctions. Expanding ill terms of the eigenfunctions O(Y, R.)) and ¢(y, k, R.,) instead of tile

expansion (4.2) gives

N ,z(5

(4.11) _,(y,T) = Ebi¢i(y, R2) + fo B(k)¢(y, k, R._) dk
i=l
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with

(4.12) bi = - _;(y, R2)(D 2 _ _2) ajOj(y, Rl) + A(k)O(y,k, Rl)dk dy.

j=l

Taking the extreme exanq)le of ai = 0, i.e., the forcing producing no Tollmien-Schlichting waves at R = R1,

the coefficient bi # 0 since (I)*(y, R2) is not orthogonal to O(y,k, R1) and ¢j(y, R1) when j # i. This is

a receptivity mechanism due to non-parallelisnl alone since no further disturbance within or without the

boundary layer is required to initiate the gain in amplitude of the Tollnlien-Schlichting wave. At first, it

nfight be tempting to discount this route to receptivity. Ut)on examination on the inter-relationship t)etween

el(Y, R1) and (_i(Y, R2) one finds

f0 'N2

1 0*
(4.13) _,2 i (y'R2)(D2 - zT=')Oi(y'R1)dY "_ 1

for a wide range of R1 and R2. It is therefi)re natural to assume that the orthogonality relations are also

approximately preserved and that b i would autonlatically be quite small if ai -- 0. rio determine whether the

orthogonality relations are approximately preserved with changing Reynolds number the entire spectrun,

of the Orr-Sommerfeld equation and its adjoint nmst be calculated ahmg with the integrals indicated in

(4.12). For the continuum, this is not a feasible undertaking. However, I)y numerically solving the initial

value problem, this mechanism is quantifiable. The results of such a calculation are given in Section 5.2.

Clearly, the analysis presented above is possible since the eigenfimctions of the Orr-Sommerfeht equation

form a complete set and any function of y satisfying the same boundary conditions can be expanded using

this set. This leads to a more direct solution of the forced problenL Considering the component of forcing

/_ = (,4, B, C) with V'. • F = 0, then equation (2.13) becoInes

[0 ](4.14) _ - i(_U Ai_ + _at_ _ = R-IAA_ + A/),

with /)(y, t) being the Fourier transform of the normal component of the force/_ that is assumed to satisfy

/)(0, t) =/)u(0, t) = 0. If it is also assumed that. _ = 0 and /) = 0 for t _< 0, then the Fourier transform in

time to (4.14) gives

(4.15)

where

(4.16)

[i& - iaU] A_ + i(_U"0 = R-IAA_ + A/)

'FO(a,y,/:1 _) = -_ _(a,y,/3, t)e-iZ_tdt.

Both of the time transforms i) and B can be expanded in terms of the complete set of functions as

N oo

(4.17) _(Y) --- EaiOi(Y) + J_o A(k)6(y,k)dk
i= 1

N OG

(4.18) /)(Y'&) = E fli(c_)¢i(y) + fo /:_(_' k)¢(y, k) dk.
i=l

Since the eigenfunctions ¢i(y), i = 1... N and ¢(y, k), k = (0, oc) satisfy

(4.19) mUA¢. - iaU"O. + R-IAA¢. = iw.A¢.,
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there is a one-to-one correspondence between the coefficients of the expansion for 9 and/}. Thus, the exact

solution is written as

N

(4.20) ._(y,&) = _ fli(&) "jo_
/3(k, _,)

i=1 i(T&77_i) ei(Y) + i(_z---_k))cPtY'k)dk''"

Then, inverting the Fourier transform in time by integrating along a contour that lies below all poles

t)rovides the coefficient of the Tollmien-Schlichting wave produced by the prescribed forcing, i.e.,

(4.21) ai = 2rr/_i(_i).

Although the temporal aspects of this result are not necessarily new (see Hill [7], Nishioka and Morkovin

[9], and Crouch [4] for spatial equivalents), the dei)endence of this receptivity factor on the vertical profile

of the divergence free component of the inhomogeneous terms is new. Some clarification of the temporal

results implied by (4.21) is necessary to put the calculations that follow into context. First, the non-zero

Tolhnien-Schlichting wave generated by forcing is not the result of a true mathematical resonance but instead

is the normal response of the solution of the homogeneous linear system to an initial value l)roblem with an

inhontogeneity. If forcing were to be of a single real frequency, w/say, started at t = oc instead of t = 0, then

'3i (co) is a delta function, and the evaluation at the complex frequency coi of the ith Tollmien-Schlichting waw_

is identically zero. However, causality is crucial to the calculations that follow. For single real frequency

forcing starting at t = 0, _i(_o) has a simple pole at _of. It is the smallness of the growth rate, i.e., the

imaginary part of _oi, that produces a near resonance like behavior for the initial value t)roblem if the real

frequency co/ matches the real part of coi in the same nmnner as the near resonant hehavior in the weakly

damped oscillator. However, prescribing a step flmction forcing is not a valid model for recet)tivity. The

step flmction is known to excite all frequencies (and hence a pole rather than a delta fimction behavior of

/4i(co)), and it is no surt)rise that a Tolhnien-Schlichting wave should be excited.

There is, however, a greater chance of resonance like behavior for the continuum modes of the Orr-

Sonmmrfeht e(tuation. First, it is recognized that fli(w) has a pole at the real frequency w I for any forcing

with pure sinusoidal behavior for t > to and to >> 1, no matter how smoothly the forcing changes from a

zero value at t = 0 to this behavior at t = to. This pole has a factor of e il_/-_)t(' which would be small for

the unstable Tolhnien-Schlichting waves. However, the (:ontinumn modes with co(k) = c_ + ie((_" + k 2) has

an imaginary part very near zero. For R = 1000 and (_ = .25, the imaginary part of w(0) has a value of

.0000625 while the inmginary part of the unstable Tollnfien-Schlichting wave has a value of .00302. Thus, if

the forcing is advected with the flow, i.e., _'/= (_, a very near resonance with the continumn should appear,

just as predicted by the model problem in Section 4.

Through (4.21) it is seen that the forced problem can be directly related to an unforced initial value

t)rol)lem. Assuming that the forcing is written as the product /) = _:(_ - co/)G(y), then the strength of the

Tolhnien-Schlichting wave is proportional to

1 f0 °_ .(4.22) ,}2 (I)i (y)(D 2 - _/2)G(y) dy,

which is the coefficient of the Tollmien-Schlichting wave for the initial value problem with O(y, O) = G(y).

In both Salwen and Grosch and in Hill, examples are explored by replacing the Laplacian of G with a delta

function centered at y = Y0. In Salwen and Grosch this is equivalent to specifying the initial vorticity and in

Hill this is equivalent to specifying the vorticity source. Since (I)_(y) behaves as e -_u as y -+ oo, one expects

that the the response to a localized source in the freestream would be proportional to e -_°. However,
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tile resultsoftile numericalcalculationspresentedlaterdonotnecessarilyhavethisproperty.Insteadtile
responsesometimesdecreasesat.a ratemuchfasterthan(,-5_,,. The discrepancy is resolved by realizing

that the specification of arbitrary initial vorticity or an arbitrary vorticity source as a delta function ignores

where these quantities conic from and the special nature of the integral (4.22). One interpretation of the

initial value problem is that the initial values are assumed to come from the solution of the flow equations

at an earlier" or upstream position (naturally forced receptivity). This concept is pushed upstream until

it is no hmger possible to ignore the leading edge effects. For this interpretation, the initial vorticity has

to be consistent with a realizable velocity field and the delta function is not. The easiest, way to resolve

this is to specify the initial velocity and then calculate the initial vorticity from this specification. If this

is done, integration by parts of (4.22) shows that there is not an c -Su° behavior of the strength of the

generated Tollmien-Schliehting waw' for" this mode of receptivity. This is as predicted t)y the model problem

in Section 4.

5. Numerical Solutions of the Linear System. For the analysis that follows, F is chosen to have a

localized structure in the y variable so that the effects of forcing the boundary layer at. various locations are

determined. Since the problen| is linear, the rest)onse to these localized forces can t)e considered as a form

of a Green's flmction for tile l)roblem.

The partial differential equations (2.13) and (2.14), together with tile boundary conditions (2.16) at the

plate and boundedness in the freest.ream, were solved nulnerically by the method of lines. This is a convenient

numerical method that has has worked well in the past; other techni(tues are possible. The spatial derivatives

were center differenced on a uniform grid and the resulting system integrated in time.

In using such an approach on an unstable system of equations in order to quantify tile instability, there

is always the possibility that the instat)ility ol)served in the numerical solution is actually the Imildut) of

numerical errors rather than tire instability resulting fl'om the initial conditions or the iml)osed forcing. This

work is particularly subject to such a criticism since it is proposed that the forcing lie entirely outside of the

boundary layer. However, in t)revious work (Lasseigne et.al., 1998), numerical errors within the boundary

layer did not effect the solution to the initial value problem when disturbances originating outside of the

boundary layer were considered. As the center of the initial disturbance moved away fronl the tloundary

layer, tighter tolerances were necessary to kee t) the nunmrical errors that accumulate inside the boundary

layer within the proper bounds. To circmnvent the issue of numerical errors producing the instabilities

observed in the receptivity calculations presented below, all solutions presented are subject to the initial

condition

y2e-y2/2
(5.1) _ =

f,7 + (y (2 - e-. dy

where the normalization is chosen so that the energy is unity a.t the initial point. This initial condition

produces tile quantifiable, unstable Tolhnien-Schlichting wave seen in Figure (5.1) labeled by" B0 = 0. To

this initial value problem, forcing is added in the governing equations. It is always chosen that the forcing

is identically zero at t = 0 and increases smoothly as a function of time. Receptivity results are presented

as a gain in the amplitude to this unstable Tollmien-Sehlichting wave. The drawback to including aal initial

condition in the forced problem is that by having two disturbances in the solution, tile time marching of

the numerical scheme must be slower to resolve the entire solution, However, efficiency of the numerical

scheme is not of issue for this work, but proper modeling is. Even at its slowest, numerical integration of

the linear, temporal stability equations is considerably faster than direct numerical simulation of tile spatial
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line/'or" _'/ = .25 with foTm'ing stopped at t = 1000.

problem. Thus, this remains an effective tool for exploring the nature of the solutions under a wide variety

of conditions and guiding the inore expensive numerical simulations.

5.1. Parallel Calculations. The first issue addressed by numerical investigation is whether or not the

resonant behavior, as described in previous sections, actually occurs for the Blasius flow. To this end, the

forcing function /_ is chosen and ,4 and C are such that there is no forcing in the pressure equation nor

in the nornml vorticity equation. A general purpose function that satisfies the boundary conditions and is

prot)ortional to a delta function centered at yo in the limit as a.v -+ 0 is

(5.2) B(y) = Bor(t)e i_It (Y/Y°)'_e-(Y-u°)2/_

(_[(y/I]O)2c--(Y--#°)2/cr:] 2 dy)1/2

The Laplacian of this function is used in the equation (2.13).

The time histories of the perturbation energy using the parameters values B0 = 1000, R = 1000,

= _ = .25, _ = 0, try = .5, and Y0 = 6 are shown in Figure (5.1). The forcing frequencies are w I = 0.05

and ,)! = 0.25 (for comparison, the Tollmien-Schlichting frequency is .0874). The fimction r(t) = 1 -e -t_/_, ,

at = 100, provides a smooth, slow increase in the forcing. After a short transient, the constant energy curve

when wl # _ represents the single frequency particular solution of the forced governing equations. The

energy remains constant until the energy of the forced solution and the energy of the unstable Tollmien-

Schlichting wave introduced by the initial conditions are of the same size. The curve with w I = _ shows

greater growth in energy than the curve with _I # c_, and this curve does not level off to a finite value. The
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growth in energy for this resonant frequency approaches t 2 but is slightly less owing to daniping by viscosity.

This is as predicted in the inviscid analytical solutions.

hi these calculations, no formal receptivity is expected since the imposed conditions are chosen to

closely approximate single frequency forcing. However, according to the theory presented in Hill [7] and in

Section 4, if the forcing is renioved, then an unstable Tolhnien-Schlichting wave must be generated. The only

remaining question is the size of this wave. The dashed line in Figure (5.1) shows the results of snioothly

removing the forcing at t = 1000. A significant Tollmien-Schlichting wave is not generated by forcing

external to the boundary layer at this resonant frequency even though the energy of the disturbance shows

tremendous growth prior to removing the forcing. Mathematically, the Tolhnien-Schlichting wave must have

been generated, but, since the conditions chosen (Y0 large and r(t) smooth ) make (:li(w) an extremely small

number, it does not appear in Figure (5.1) .

Transient effects of forcing are explored by calculating the response to the forcing with

(5.3) r(t) = e -I'-t°)'-'t°,.

Figure (5.2) shows the time histories of the perturbation energy for eighteen cases: to = 200, B0 = 106,

et = _ = .25, q = 0, c,_ = .5 a_ = 10, 25, 50, _oI = 0.05, 0.25 and Y0 = 1.0, 3.0, 5.0. Even though the forcing

is applied well outside of the boundary layer (up to Y0 = 5), there is an increase in the Tolhnien-Schlichting

wave amplitude owing strictly to this forcing. Clearly, the dominant parameter is the vertical position of

the localized forcing function. This might even be unexpected since the Tollmien-Schlichting wave and its

adjoint both are proportional to exp (-TY0) at the point of forcing. This factor cannot account for the more
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that fiveordersofmagnitudedecreaseseenbetweengroupsofsolutionsastheparameterY0 varies. Also of

important note in Figure (5.2) is the slow algebraic decay after cessation of the forcing when Y0 = 5. This

is the halhnark of the response as predicted in Grosch and Salwen [10] for tile continuum modes.

It is seen above that even for a single wavenumber "_'= .25 and a single Reynohts number R = 1000,

the strength of the receptivity response depends on a wide number of parameters forcing introduces into the

problem. Using a forcing function of the form (5.2) subject to (5.3), the free parameters for this one point on

the Orr-Sommerfeht diagram are: Bo, to, _'/, a_, at, and Y0. B0 is just a scaling factor in a linear problem,

to shouht be chosen sufficiently large such that forcing does not start immediately, and there is relatively

weak dependence on _/ and at (as compared to y0)- It is interesting that these two parameters do not have

more of an affect considering that tile width of the forcing spectrum is solely determined t)y them.

From tim theory in Section 5, the receptivity factor is f(_'J's - wI) (where _ is the Fourier transform

of (5.3)) times the coefficienf of an eigenflmction expansion of the function B(y) can be measured by ex-

trapolating the time histories of E(t) back to t = 0. If aTx is the complex (:()efficient of the unstable

Tolhnien-Sehlichting wave normalized as in (4.3), then the intercept of the straight line extrapolation of the

Tolhnien-Schlichting energy growth seen in Figure (5.2) represents larsl 2. Thus, the gain in magnitude of

the quantity

(5.4) = +
IBol

will be referred to as the receptivity factor and used to characterize the response to the forced problem. In

the linfit [B0] _ oc, the contribution to the receptivity factor is from the forcing only and not from the

initial condition. This coefficient has been determined for the eighteen cases included in Figure (5.2) mid is

tabulated in Table 1 with tile Orr-Sommerfeld coefficient determined by integrating the disturbance equations

with b(y, 0) = _)(y) and no forcing. Also included in Table 1 is the value of r(WTS -- Wf) which has been

determined numerically. In every case, when _(wrs --w/) is multiplied by the coefficient determined by the

initial value problem, the theory agrees with the forced calculations. Additional values of r(wTS --Re(_TS)),

i.e. forcing at exactly the frequency of the Tollmien Schlichting wave and the predicted receptivity factor

are cah:ulated an(l tabulated with the previous results. For these parameter values, the tuning of the forcing

to match tile Tollmien-Schlichting wave does not have much affect.

In the previous calculations, tile function _) has been specified and therefore these curves represent the

case of naturally forced receptivity. In Figure (5.3), the same function was used to specify A'-'/) and the

differences in ATs as a function of Y0 is shown. As the disturbance location moves toward the freestream, the

immediate generation of Tollmien-Schlichting waves have strengths proportional to e -_ as was previously

predicted (see Hill, 1995). The strength of immediate generation of Tollmien-Schlichting waves for the

naturally forced receptivity drops off at a much faster rate as the forcing location moves toward the freestream.

Thus, receptivity to turbulent disturbances which are shielded from the plate region by mean flow shear will

have less than expected strength considering that the Tollmien-Schlichting waves decay as e -Sy.
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TABLE 1

Receptivity factor" for transient forcing.

,)

10

10

10

25

25

25

50

50

50

10

10

10

25

25

25

50

50

50

10

10

10

25

25

25

50

50

50

wf yo

.05 1

.05 3

.05 5

.05 1

.05 3

.05 5

.05 1

.05 3

.05 5

.25 1

.25 3

.25 5

.25 1

.25 3

.25 5

.25 1

.25 3

.25 5

.08744 1

.08744 3

.08744 5

.08744 1

.08744 3

.08744 5

.08744 1

.08744 3

.08744 5

_(_"r._ - w f) Initial Value Forced

1.195 * 1013.052

3.052

3.052

4.800

4.800

4.800

3.664 * 10 -2

1.162 * 1()-_

1.195 * 10 l

3.664 * 10 -2

1.162 * 10 -'_

3.647 * 10 l

1.118 * 10 -l

3.539 * 10 -5

5.736 * 10 J

1.759,10 1

5.567 * 10 -r'

6.730 1.195

6.730 3.664

6.730 1.162

2.867 1.195

2.867 3.664

2.867 1.162

4.106 1.195

4.106 3.664

4.106 1.162

4.924 1.195

4.924 3.664

4.924 1.162

3.063 1.195

3.063 3.664

3.063 1.162

4.843 1.195

4.843 3.664

4.843 1.162

6.849 1.195

6.849 3.664

6.849 1.162

,10 _

• 10 2

,10 -5

,101

, 10 -2

,10 -5

,101

, 10 -2

• 10 5

, 10 l

, 10 -2

, 10 -5

,10 l

, 10 -2

, 10 -5

,10 l

, 10 -2

,10 -5

,10 _

,10 -2

,10 -5

8.041 * 101

2.466 * 10 -I

7.804,10 r,

3.425 * 10 l

1.050 * 10 -1

3.324 * l0 -5

4.906 * 10 l

1.504 * 10 -I

4.761,10 r,

5.883 * 101

1.804 * 10 -1

5.710 * 10 -5

3.660 * 10 J

1.122 * 10 -1

3.559 * 10 -5

5.787 * 101

1.774 * 10 -l

5.628 * 10 -5

8.184 * l01

2.509 * 10 -1

7.958 * 10 -5

5.2. Non-parallel Calculations. In the standard Orr-Sommerfeld approach, the value of R corre-

sponds to a specific downstream position and therefore to a particular thickness of tile boundary layer. The

Orr-Sommerfeld solution approach also focuses on a single mode (the least stable if R < R_ or tile unstable

mode if R > R_) which is assumed to be periodic.in the streamwise direction. The basic non-parallel theory,

as set out in Gagster [5], is properly considered as a problem of a spatially evolving flow. However, it appears

that what is considered by this theory is the evolution of only one mode and not the interaction of other

modes. Thus, it is still unclear how an individual disturbance, written as a sum of all eigenfunctions, evolves

as the value of R changes smoothly. The techniques employed here allow for the unique opportunity to

measure the linear interactions between the eigenfunctions at two different downstream positions.

The response to forcing of the form (5.2) is shown in Section 5 to be linked to tile solution of the initial

value problem and this result is confirmed by the numerical experiments for the parallel problem. Therefore,
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fi)r the purpose of clarity, non-parallel effects are explored through a series of initial value problems, which

are directly applicable to tile problem of natural receptivity; the implications for the naturally forced problem

can be inferred. In the spirit of using the temporal problem to explore a problem that is properly considered

spatial, the Reynolds number in the disturbance equations (2.13-2.14) will be held constant and the mean

flow will be amended to represent different downstream positions. The transformation is given by (4.10). The

standard Orr-Sommerfeld diagram represents holding the mean flow constant (x0 = 1) and the downstream

evolution of a single wavelength disturbance traces a ray emanating from the origin of a R-c_ diagram. In this

approach (R is held constant and x0 varied), the downstream evolution of a single wavelength disturbance

traces a horizontal t)ath in the x0-c_ diagram which is shown for R = 1000 in Figure (5.4).

In the first series of calculations, an initial value of the form (5.2) with r(t) = 1 and a;F = 0 is added to

the benchmark initial disturbance (5.1) and the receptivity factor F is computed. Figure (5.5) shows AT._

as a function of Yo. The receptivity factor is found to be decreasing slightly faster than exponentially for

increasing yo as previously mentioned, but it is also shown to be an increasing function of x0 (by as much

as two orders of magnitude when Y0 = 4). When the disturbance is inside the boundary layer for all values

of x0 (Y0 = 1), the increase in receptivity factor as x0 increases is about half an order of magnitude. All

values shown are for the unstable region of the Orr-Sommerfeld diagram where it is possible to calculate the

receptivity factor using this approach. For Y0 = 5 the disturbance is completely outside of the boundary

layer and the increase in the receptivity factor is now several orders of magnitude (but the factor is still

small). The solutions for smaller values of x0 when Y0 = 5 could not be properly resolved using the same

parameter values, but the extrapolation of the results is obvious.
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In the next series of initial value problems shows order of magnitude increases in the receptivity factor as

xo increases and Y0 large are due to tile eontimmm modes and other Tollmien-Sehliehting modes from lower

value of x0 feeding tile Tolhnien-Schlichting modes at the higher x0. For x0 = 0.8, an unstable Tollmien-

Sehliehting mode is found by calculating the solution to the governing equations for large time. This mode

is then normalized to have unit energy and is used for an initial condition. Figure (5.6) shows that the

variation of the Tolhnien-Schlichting amplitude as x0 varies from stable through the unstable region of the

Orr-Sommerfeld diagram is slight. Tile curve for x0 = 0.4 starts out with exponential decay which is to be

expected if the initial condition is mostly the stable Tollmien-Schlichting wave and then decays algebraMy

as expected since only the eontinumn is left t"(22'large times. All curves extrapolated back to t = {) along

the exponential part of the growth or decay give vah2es of receptivity factors between 0.8 and 1.25. Next,

the solution h)r initial values of the form (5.2) with Y0 = 3 and xo = 0.8 is calculated twice: once as is and

once with an additional Tolhnien-Schlichting wave added that is amplitude and t)hase matched to nearly

cancel the instability. The results are seen in Figure (5.7) where the divergence of the solutions clearly show

that tile value of a'is for the second ease is near zero. The solution using the stone two initial values are

calculated with x0 = 1 and xo = 1.2. Surprisingly, it is seen that a majority of the Tollniien-Schliehting wave

at these higher values of x0 do not come from the Tollmien-Sehlichting wave at a'0 = 0.8 but rather froIn

the part of the solution that produces no Tolhnien-Sehliehting wave at Zo = 0.8. The results here are rather

ominous. If there is any additional disturbance in the outer edges of the boundary layer or near freestreain,

these disturbances feed directly into the Tolhnien-Sehlichting wave and will produce a growth rate greater

than (sometimes very nmch greater tllan) the predicted value, even when that predicted value accounts for

all of the uon-paTullel effects associated with a single Tollmien-Schlichting wave.

6. Conclusions. It has been shown that the techniques previously developed by the authors to in-

vestigate various aspects of the temporal stability problem can also be applied to investigate the problem

of receptivity. It is shown that resonance with the continuum can occur, and this must t)e considered

when investigating bypass mechanisms. Also shown is that the form in which the forcing fim(:tion is intro-

duced into tile governing equations has great significance when determining the strength of the generated

Tolhnien-Schliehting wave. Perhaps most imt)ortantly, it is shown that the transfer of the solution from one

downstream lo(:ation to another is not one-to-one in terms of the eigenvalues, and that tile contimmm at one

position fi_e(ls into the Tolhnien-Schlichting wave at another.
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